

4COM 段式 LCD 驱动器, 6uA typ.

1 简介

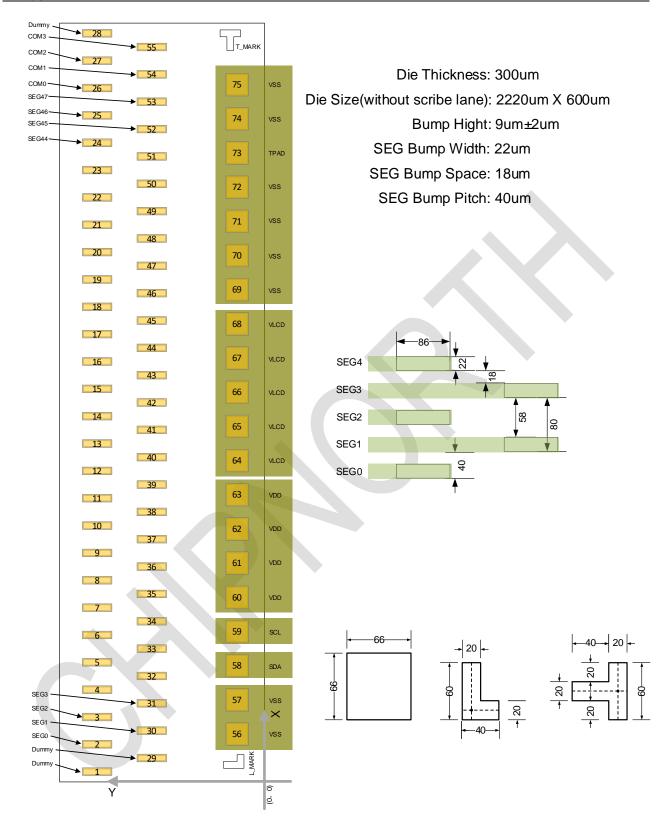
CN9103C4S48 是一款段码式 LCD 驱动芯片, 占空比为 1/4,最多可驱动多达 192 个段。该器件 采用低功耗设计,能够实现超低功耗,减少电源损 耗。

2 特征

- 固定的 1/4 占空比模式,最多 192 点
- 低功耗设计,典型条件下电流为 6uA
- 内置 OSC 电路
- 内部 LCD 对比度控制电路
- 集成上电复位电路
- 无需外部组件
- 接口: 2线串口 I2C
- 与 TTL/CMOS 兼容
- 高 EMC 抗扰度

3应用领域

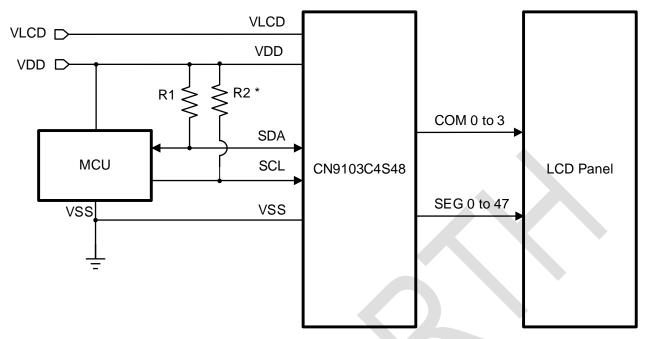
- 家电产品
- 仪表设备等
- 玩具
- PDA
- 钟表


4 订购信息

产品料号	封装	数量		
CN9103C4S48	COG	TBD		

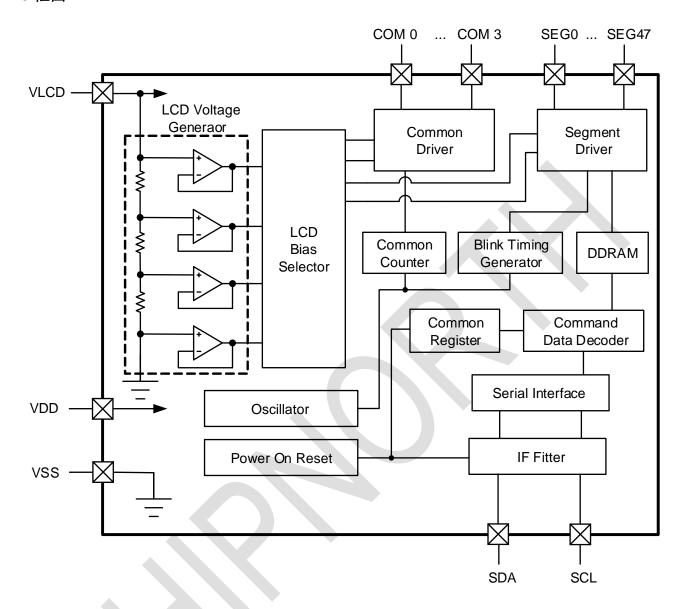
5 PAD说明

名称	I/O	功能
SDA	I/O	2线串行数据输入输出
SCL	1	2线串行时钟输入
VSS	1	GND
VDD	1	电源
VLCD	1	设置 LCD 偏置电压。它可以直接连接到 VDD,然后可以通过设置寄存器 EVR [3:0]来调整内部 LCD 偏置电压。
TPAD	1	需要与 GND 相连
SEG0~SEG47	0	LCD 的 SEGMENT 输出
COM0~COM3	0	LCD 的 COMMON 输出


6 PAD坐标

单位: µm

							单位:µm
编号	名称	Х	Y	编号	名称	X	Y
1	Dummy	30	490	39	SEG19	870	330
2	SEG0	110	490	40	SEG21	950	330
3	SEG2	190	490	41	SEG23	1030	330
4	SEG4	270	490	42	SEG25	1110	330
5	SEG6	350	490	43	SEG27	1190	330
6	SEG8	430	490	44	SEG29	1270	330
7	SEG10	510	490	45	SEG31	1350	330
8	SEG12	590	490	46	SEG33	1430	330
9	SEG14	670	490	47	SEG35	1510	330
10	SEG16	750	490	48	SEG37	1590	330
11	SEG18	830	490	49	SEG39	1670	330
12	SEG20	910	490	50	SEG41	1750	330
13	SEG22	990	490	51	SEG43	1830	330
14	SEG24	1070	490	52	SEG45	1910	330
15	SEG26	1150	490	53	SEG47	1990	330
16	SEG28	1230	490	54	COM1	2070	330
17	SEG30	1310	490	55	СОМЗ	2150	330
18	SEG32	1390	490	56	VSS	140	80
19	SEG34	1470	490	57	VSS	240	80
20	SEG36	1550	490	58	SDA	340	80
21	SEG38	1630	490	59	SCL	440	80
22	SEG40	1710	490	60	VDD	540	80
23	SEG42	1790	490	61	VDD	640	80
24	SEG44	1870	490	62	VDD	740	80
25	SEG46	1950	490	63	VDD	840	80
26	COM0	2030	490	64	VLCD	940	80
27	COM2	2110	490	65	VLCD	1040	80
28	Dummy	2190	490	66	VLCD	1140	80
29	Dummy	70	330	67	VLCD	1240	80
30	SEG1	150	330	68	VLCD	1340	80
31	SEG3	230	330	69	VSS	1440	80
32	SEG5	310	330	70	VSS	1540	80
33	SEG7	390	330	71	VSS	1640	80
34	SEG9	470	330	72	VSS	1740	80
35	SEG11	550	330	73	TPAD	1840	80
36	SEG13	630	330	74	VSS	1940	80
37	SEG15	710	330	75	VSS	2040	80
38	SEG17	790	330	76	T_Mark	2170	85
				77	L_Mark	50	65


7 典型应用

注: R2 选用。

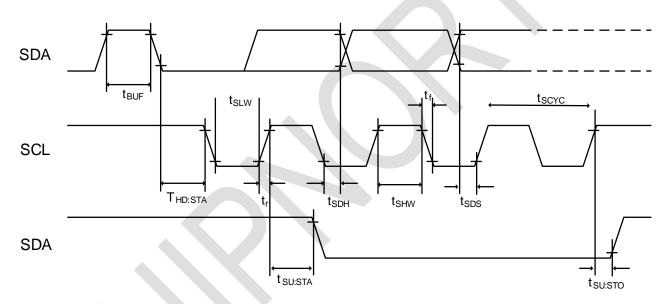
8 框图

9 规格

9.1 绝对最大额定值

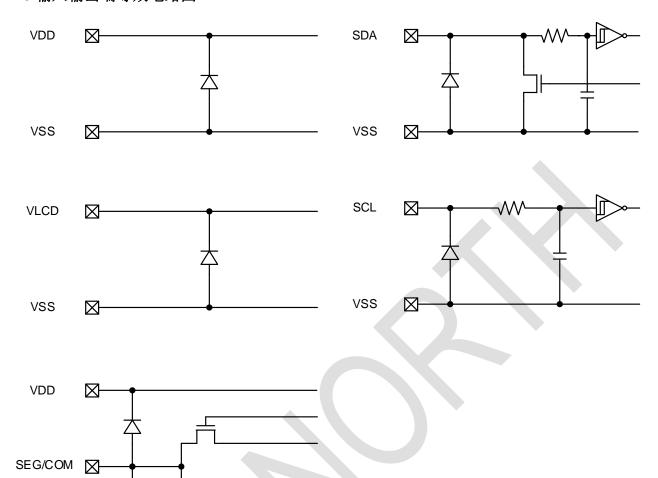
参数	符号	额定范围	单位	备注
电源电压	V _{DD}	-0.3 to +6.5	V	电源
电源电压 1	VLCD	-0.3 to +6.5	V	LCD 驱动电压
输入电压范围	Vin	-0.3 to V _{DD} +0.3	V	
焊接温度	T _{lead}	260 (soldering, 10s)	°C	
工作温度范围	Topr	-40 to 125	°C	
储存温度范围	T _{stg}	-55 to 150	°C	

9.2 电性参数


测试条件: VDD=3.3V, TA = 25 °C,除非另有规定。

参数	符号	条件	最小	典型	最大	单位
VDD 电压范围	V _{DD}		2.5	-	5.5	V
VLCD 电压范围	V _{LCD}	LCD 驱动电压	2.5	-	5.5	V
"H"电平输入电压	ViH		1.4	-	V_{DD}	V
"L"电平输入电压	VIL		Vss	-	0.4	V
SDA 低电平输出电压	V _{OL_SDA}	I _{load} =-3mA 无需考虑 COG 面板上的 ITO 电阻。	0	1	0.4	V
SEGMENT 导通电阻	Ron	负载=±10uA	-	3	-	kΩ
COMMON 导通电阻	Ron	负载=±10uA		3		kΩ
待机电流	I _{STB}	显示关闭	-	-	1	uA
工作电流	loo	VDD=3.3V, VLCD=3.3V, Ta=25℃, SR=省电模式 1, 帧翻转, FR=72Hz, 无 LCD 面板负载。	1	3	-	uA
工作电流	IVLCD	VDD=3.3V, VLCD=3.3V, Ta=25℃, SR=省电 模式 1, 帧翻转, FR=72Hz, 无 LCD 面板负 载。		3	-	uA
帧频	F _{clk}	FR=72Hz 设定	-	72	-	Hz

9.3 MPU 接口特性


参数	符号	条件	最小	典型	最大	单位
输入上升时间	tr	-	-	-	0.3	μs
输入下降时间	t _f	-	-	-	0.3	μs
SCL 周期	tscyc	-	2.5	-	-	μs
SCL 高电平脉冲宽度	tshw	-	0.6	-	-	μs
SCL 低电平脉冲宽度	tsLW	-	1.2	-	-	μs
SDA 建立时间	t _{SDS}	-	100	-	-	ns
SDA 保持时间	tsDH	-	100	-	-	ns
总线空闲时间	t _{BUF}	-	1.3	-		μs
启动条件保持时间	t _{HD;STA}	-	0.6	-	-	μs
启动条件建立时间	tsu;sta	-	0.6	-	-	μs
停止条件建立时间	tsu;sto	-	0.6	-	-	μs

2-line serial interface timing

10 输入输出端等效电路图

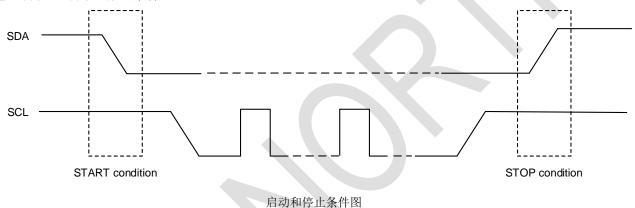
11 指令寄存器说明

 \boxtimes

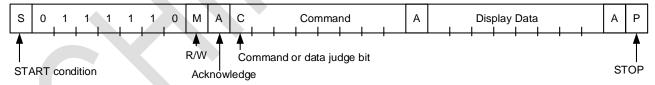
VSS

	D7	D6	D5	D4	D3	D2	D1	D0
ADSET	С	0	0	P[4:0]				
DISCTL	С	0	1	FR[1:0] LF SR[1:0]				
MODSET	С	1	0	ULP	EN	/	/	/
EVRSET	С	1	1	0	0	EVR2:0]		
ICSET	С	1	1	0	1	P[5]	RST	P[6]
BLKCTL	С	1	1	1	0	BF[2:0]		
APCTL	С	1	1	1	1	EVR[3]	AON	AOFF

名称	默认值	描述						
		DDRAM 地址						
		在写模式下,地址 P [6:0]的范围可以设置为 0~2F(十六进制)						
P[6:0]	0000000	在读模式下,地址 P [6:0]的范围可以设置为 0~2F,30~32(十六进制)						
		不要指定其他地址,否则地址将设置为"0000000"						
		注意: 位 P[5]、P[6]在指令 "ICSET" 中						
		设置帧频率以节省功耗						
		00, 72Hz, 正常模式						
FR[1:0]	00	01, 96Hz, 工作模式 1						
		10, 49Hz, 工作模式 2						
		11, 144Hz, 工作模式 3						
		设置帧翻转或线翻转模式:						
LF	0	0,线翻转						
		1,帧翻转						
		为节电设置内部偏置电流						
		00, *0.5, 省电模式 1						
SR[1:0]	10	01, *0.67, 省电模式 2						
		10, *1.0, 正常模式, 默认值						
		11, *1.8, 高功率模式						
ULP	0	设置"1"以启用超低功耗模式,这可以进一步降低总功耗与'SR'和'FR'功率节省模式						
		0: 禁用芯片上的所有块,所有 COM/SEG 引脚将被拉到 GND						
EN	0	1: 启动						
		调整电阻分配器用于 LCD 对比度设置						
		0000, 1.000 * VLCD						
		0001, 0.975 * VLCD						
		0010, 0.950 * VLCD						
		0011, 0.925 * VLCD						
		0100, 0.900 * VLCD						
		0101, 0.875 * VLCD						
		0110, 0.850 * VLCD						
		0111, 0.825 * VLCD						
EVR[3:0]	0000	1000, 0.800 * VLCD						
		1001, 0.775 * VLCD						
		1010, 0.750 * VLCD						
		1011, 0.725 * VLCD						
		1100, 0.700 * VLCD						
		1101, 0.675 * VLCD						
		1110, 0.650 * VLCD						
		1111, 0.625 * VLCD						
		注意: 位 EVR [3]在指令 "APCTL"中						
RST	0	设置 "1" 重置此表中的所有寄存器,但它不会重置 DDRAM 中的显示数据。						
		配置闪烁频率:						
BF[2:0]	000	000,不闪烁						
[]		001, 0.5Hz						
l		1 00.7 C.O.I.E						



		010, 1Hz						
		11, 2Hz						
		100~111, 0.25Hz						
		配置像素显示						
AON:		00, 所有像素 ON/OFF 取决于显示 DDRAM 中的数据						
AON.	00	01, 无论 DDRAM 数据如何,所有像素都关闭						
AUFF		10, 无论 DDRAM 数据如何,所有像素都是打开的						
		11, 所有像素都关闭,无论 DDRAM 数据如何,与"01"相同						


12 功能说明

12.1 指令和数据传输方法

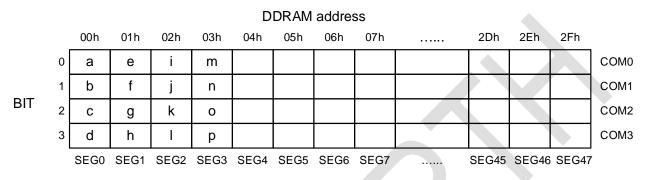
本设备通过 2 线串行接口传输指令或数据时,必须生成"启动条件"和"停止条件"状态。当 SCL 保持高电平时,SDA 从高电平向低电平切换,即为"启动条件"。当 SCL 保持高电平,SDA 从低电平向高电平切换,即为"停止条件"。

- 1.生成"启动条件"。
- 2.发出从机地址 7C。
- 3.传输指令。
- 4.传输显示数据。
- 5.生成"停止条件"

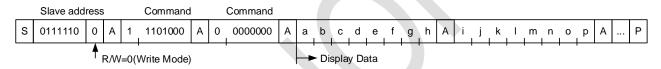
在生成"启动条件"后,发出从机地址"01111100"(写模式),紧跟着进行指令传输。最高位 MSB (指令或数据判断位)定义后面的字节是指令还是数据。当"指令或数据判断位"为"1"时,下一个字节为指令。当"指令或数据判断位"为"0"时,下一个字节为显示数据。

一旦进入显示数据传输状态,就不能输入任何指令。若要重新输入指令,请重新生成"启动条件"。 如果在指令传输过程中输入"启动条件"或"停止条件",则指令将被取消。 如果从地址连续输 入在"启动条件"后,它将处于指令输入状态。请在"启动条件"后的第一个数据传输中输入"从地 址"。

* 当第一个数据传输中的从站地址无法识别时,应答不返回,下一个传输将无效。当数据传输处于无

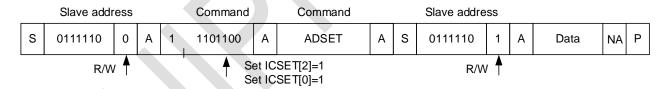

效状态并且"开始条件"再次传输时,它将返回到有效状态。

*请观察输入上升时间和设置时间的微处理器接口特性,在传输指令和数据时保持时间(请参阅微处理器接口)。


12.2 写入显示数据和传输方法

将 R/W 位置 "0", 进入 "写"模式。

该设备具有 48×4=192 位的显示数据 RAM (DDRAM)。



8 位数据将存储在 DDRAM 中。要写入的地址是由地址设置指令指定的地址,并且该地址在每 4 位数据中自动递增。通过连续发送数据,可以将数据连续写入 DDRAM。

12.3 读取指令寄存器和传输方法

可以在读取模式下读取指令寄存器。指令寄存器的读取顺序如下所示,与显示数据的读取顺序相似。

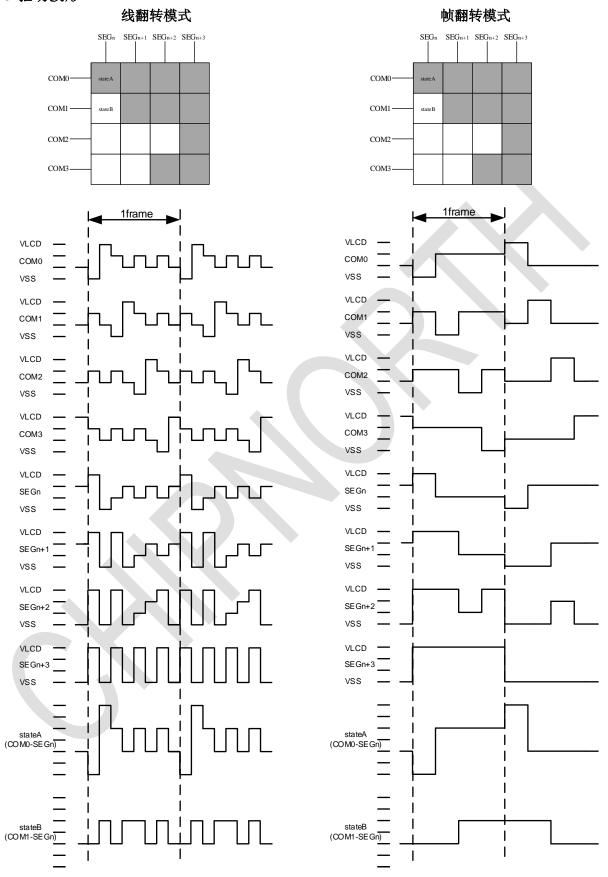
指令寄存器地址如下所述。在此模式下可以读取以下寄存器设置。

寄存器	D7	D6	D5	D4	D3	D2 D1 D0		地址	
REG1	1	/	/	/	RST	BF[2:0]		30H	
REG2	FR[1:0]	SR[1:0]		LF	EN AON AOFF			31H
REG3	1	/	/	ULP	EVR[3:0]			32H	

12.4 读取显示数据和传输方法

读取模式顺序如下所示。

在读取模式下,可以通过 SDA 线从 DDRAM 中读取显示数据。首先执行"写操作",以确定要访问的 DDRAM 地址。然后,发送"启动条件"以及从机地址"01111101"(读模式),之后 SDA 线便会连续输出显示数据。如果在读取 DDRAM 之前没有指定 DDRAM 地址,则读取模式期间的输出将来自当前 DDRAM 地址。


DDRAM 地址将在每8位输出数据之后递增。在每8位数据输出后,若收到主机发送的应答信号,则从机将继续输出显示数据并增加地址。当接收到"Non-Ack"时,从机将释放 SDA线,主机发送"停止条件"读取模式将结束。

显示数据读取顺序如下所示。

12.5 驱动波形

13 重要声明

芯北电子科技(南京)有限公司及其子公司保留对本文件及本文所述任何产品进行修改、改进、更正或其他变更的权利,恕不另行通知。芯北电子科技(南京)有限公司不承担因使用本文件或本文所述任何产品而产生的任何责任;芯北电子科技(南京)有限公司也不转让其专利权或商标权及其他权利的任何许可。在使用本文件或本文所述产品的任何客户或用户应承担所有风险,并同意芯北电子科技(南京)有限公司和其产品在芯北电子科技(南京)有限公司网站上展示的所有公司免受任何损害。

对于通过未经授权的销售渠道购买的任何产品,芯北电子科技(南京)有限公司不作任何保证,也不 承担任何责任。如果客户购买或使用芯北电子科技(南京)有限公司的产品用于任何非预期或未经授权的 用途,客户应赔偿芯北电子科技(南京)有限公司及其代表,使其免受因直接或间接引起的任何人身伤害 或死亡造成的所有索赔、损害赔偿和律师费。