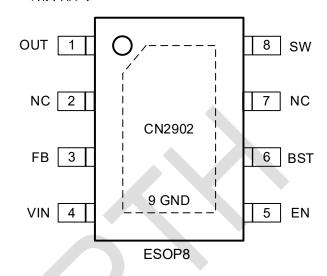


1 简介

CN2902 是一款 2.4V-6V 宽输入范围的高效升压转换器,适合智能电表、LCD 偏置电源、蓝牙扬声器以及需要电池为高压模块供电的电源系统等应用。该器件集成了两个功率 MOSFET,无需外部整流二极管,可以提供 24V/3.5A 输出,轻载时会进入 PFM 模式,提高工作效率,重载时进入 PWM模式,提供稳定开关频率,较低的输出纹波,开关频率为 1MHz,可以在提供高效率的同时使用较小的外部元件,内置 0.6ms 软启动时间,可抑制启动时的输出电压过冲。

CN2902 具有逐周期电流限制、输出过压保护和热关断功能,采用 ESOP8 封装。

2 特征


- 2.4V-6V 输入电压范围
- 0.17mA 静态电流
- 0.05uA 关断电流
- 最大输出电压为 24V
- 最大输出电流 3.5A
- 效率高达 90%
- 内置功率 MOS, 无需外部整流管
- 600mV±3%反馈基准电压
- 1MHz 固定工作频率
- 轻载高效的 PFM 模式
- 0.6ms 软启动,可限制启动时输出电压过冲
- 输出过压保护
- 逐周期电流限制保护
- 过热关断

3应用领域

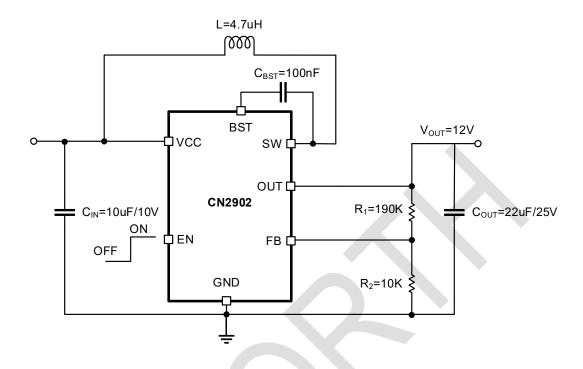
- 智能电表
- 工业应用
- 需要电池为高压模块供电的电源系统
- 蓝牙扬声器
- 大型 LCD 偏置电源

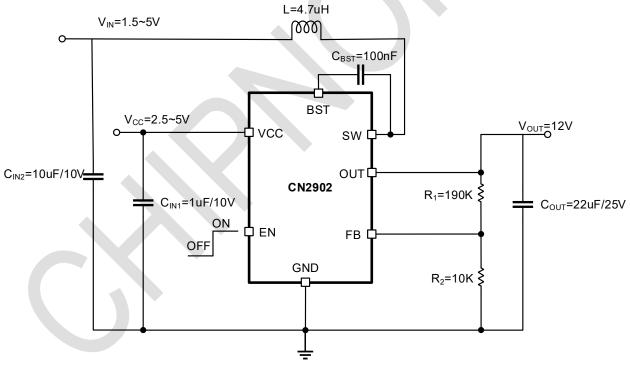
集成式 24V/3.5A 高效升压转换器

4 引脚排列

5丝印

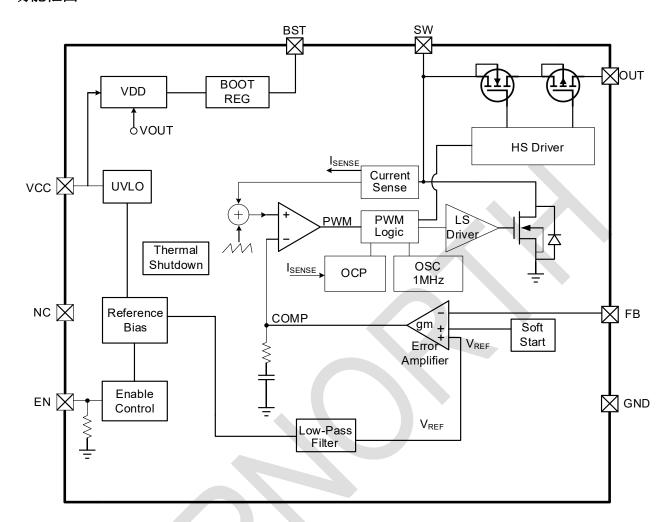
产品型号	丝印	封装	数量/编带
CN2902	CN2902/YYWW	ESOP8	4000/盘


注*: YY=Year: WW=Week。


绿色(RoHS&HF): 芯北科技将"绿色"定义为无铅 (符合 RoHS 标准)且不含卤素物质。如果您有其他意见或 问题,请直接联系您的芯北代表。

湿敏等级(MSL): 3

6 典型应用



注:

1. $V_{OUT} = V_{REF} \times (R_1 + R_2) / R_2$

7 功能框图

8 引脚描述

引脚编号	引脚名	描述
1	OUT	输出引脚
2	NC	无连接
3	FB	反馈引脚,将 FB 连接到从输出到 GND 的外部分压电阻的中心点
4	EN	高电平使能引脚,将该引脚调至高电平可启用部件,调至低电平可禁用部件,如
4	LIV	果始终开启,则将 EN 连接至 VCC
5	vcc	芯片供电端
6	6 BST 自举引脚,在BST-SW 之间连接 100nF 电容	
7	NC	无连接
8	SW	开关节点引脚,在 SW 和输入电源之间连接一个电感

9 规格

9.1 绝对最大额定值

参数	符号	值	单位
供电输入电压, EN 电压	V _{CC} , V _{EN}	-0.3~6	V
SW	V _{SW}	-0.3~24	V
FB 电压	V _{FB}	-0.3~6	V
工作结温范围	TJ	-40~150	°C
工作环境温度范围	TA	-40~85	°C
焊接温度	T _{LEAD}	260 (soldering,10s)	°C
存储温度范围	T _{STG}	-55~150	°C

注:应力超过"绝对最大额定值"中所列的额定值可能会对设备造成永久性损坏。这些仅为应力额定值,并不意味着设备在这些条件下或超出"建议操作条件"下所示条件的任何其他条件下都能正常运行。长时间暴露在绝对最大额定条件下可能会影响设备的可靠性。

9.2 静电放电等级

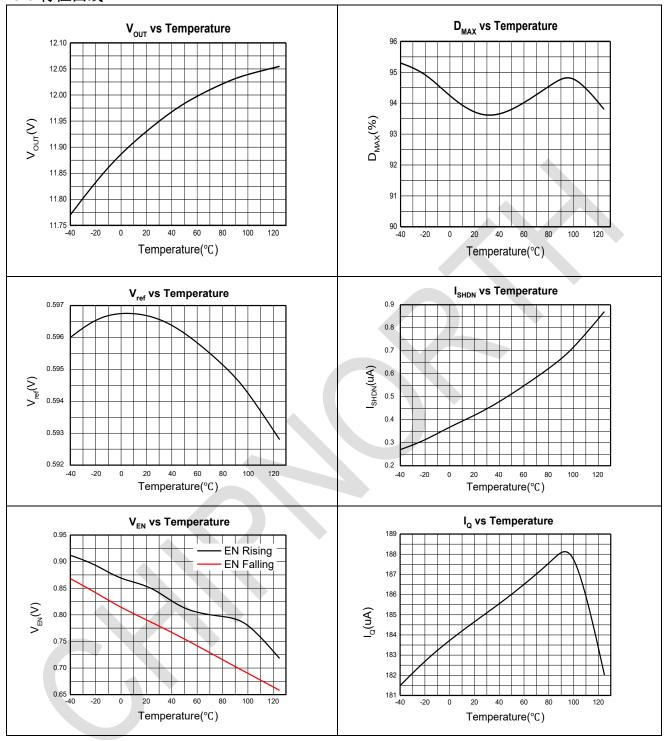
放电模式	规范	值	单位
НВМ	ESDA/JEDEC JS-001-2017	2000	٧
CDM	ANSI/ESDA/JEDEC JS-002-2022	2000	V

9.3 推荐工作条件

参数	符号	最小值	最大值	单位
工作电压范围	VCC	2.4	6	V
输入电容范围	CIN	10		μF
输出电容范围	COUT	22		μF
电感范围	L	4.7	10	μH

9.4 热阻

参数	描述	值	单位
Reja	结点至环境	60	°C/W
Rejc	结点至外壳	50	°C /W


9.5 电性参数

测试条件: Vcc=5V, T_A=25°C, 除非另有规定。

参数	符号	条件	最小	典型	最大	单位
输入电压范围	Vcc		2.4	3	6	V
输入欠压锁定阈值	V _{UVLO_R}	Vcc 上升,迟滞 = 100mV		2.3		V
输入静态电流	I.	无开关 V _{FB} = V _{REF} * 120%		0.17		mA
电源电流	IQ	louт = 0 时开关		1.6		mA
关断电流	I _{SHDN}	$V_{IN} = 3V$, $V_{EN} = 0V$		0.05	1	uA
FB 基准电压	V _{REF}		582	600	618	mV
FB 输入电流	I _{FB}	V _{FB} = 2V		1		nA
开关频率	Fosc		800	1000	1200	kHz
最短导通时间	T _{ON_MIN}			100		ns
最大占空比	DMAX			95		%
NMOS 导通电阻	Ron	Isw = 100mA		110		mΩ
NMOS 电流限制	I _{LIMIT_HS}	占空比 = 50%		3.9		Α
SW 漏泄电流	Isw_LK	Vcc=5V, EN=GND, Vsw = 26V		0.1		uA
TN 协入国法	V _{EN_R}	上升	1.2			V
EN 输入阈值	V _{EN_F}	下降			0.4	V
EN 输入电流	I _{EN}	V _{CC} = 5V, EN = 5V		2.6		uA
软启动时间	Tss			0.6		ms
输出 OVP 阈值		上升,V _{FB} / V _{REF}		115		%
热关断温度	T _{SHDN}	上升,迟滞 = 30°C		150		°C

9.6 特性曲线

10 详细描述

10.1 概述

CN2902 是一款高效率、高输出电压升压型转换器。该器件采用固定频率、峰值电流模式升压稳压器架构来调节反馈引脚的电压。该器件集成了 24V/3.5A 开关 MOSFET。参照功能框图即可了解 CN2902 的工作原理。CN2902 具有内部软启动功能,以降低启动时的浪涌电流和输出电压的过冲量。

10.2 控制机理

每个时钟周期开始时打开功率 MOSFET,在电流检测放大器的输出中加入斜率补偿斜坡,并将结果输入到比较器的正输入端,与负端的 COMP 电压进行比较,当超过 COMP 电压时,功率 MOSFET 关闭,直到下一个时钟周期到来时再次打开 MOSFET。

10.3 功能描述

10.3.1 过流保护

CN2902 采用逐周期电流限制电路,可在过载情况下限制电感的峰值电流。电流检测电路检测充电阶段流经电感的电流。当电流值超过限流阈值时,功率 MOSFET 关闭,电感将被迫离开充电阶段,进入放电阶段。因此,电感电流不会超过限流阈值。

10.3.2 软启动

CN2902 实现了软启动功能,以降低启动时的浪涌电流。当 EN 引脚被拉高时,CN2902 即开始软启动。当 VOUT 低于 120%的 VIN 时,输出电压缓慢升高,开关频率固定为 500 kHz(典型值);当 VOUT 超过 120% 的 VIN 时,开关频率变为 1MHz(典型值),并将输出电压升高到设定值。

10.3.3 输出短路保护

当发生输出短路保护时,CN2902 提供打嗝保护模式。在发生短路时,当 VOUT 降低到 105%的 VIN 以下时,并且持续触发峰值电流限制 1ms 后关闭,开始打嗝。在打嗝稳定状态下,器件会自行关闭,并在 32 毫秒(典型值)等待时间后重新启动,这有助于减少连续短路条件下的整体热耗散。短路解除后,器件可自动恢复并重新进入软启动阶段。

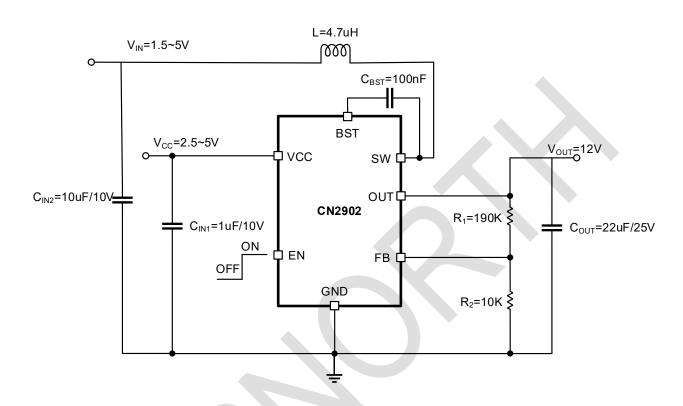
10.3.4 输出过压保护

如果检测到输出电压高于过压保护阈值(通常为 25 V),则 CN2902 会立即停止开关,直到 VOUT 引脚上的电压降至输出过压保护恢复阈值以下,重新开始软启。该功能可防止器件过压,并确保与输出端连接的电路安全。

10.3.5 关机模式

将 EN 驱动至 GND,使 CN2902 进入关机模式。在关机模式下,基准、控制电路和主开关关闭,输入电流降至 1uA 以下。

10.3.6 过温保护


一旦结温(TJ)超过 150°C(典型值), CN2902 即进入热关断模式。在此模式下,主功率 MOSFET 将关闭,直到温度降至 120°C(典型值)以下,然后器件重新开始开关。

11 应用信息

11.1 典型应用

下图为典型应用电路原理图,该电路可用作评估 CN2902 性能。该部分介绍应用原理图具体的设计过程。

11.2 设计要求

711- 2411 2141				
	最小	最大	单位	
输入电压	2.5	5	V	
输出电压	11.88	12.12	V	
输出电流		0.4	А	
纹波		50	mV	

11.3 电路设计

11.3.1 输出电压设置

升压结构环路将使 FB 引脚电压等于基准电压 V_{REF} 。因此,当 R_2 连接 FB 引脚和 GND, R_1 连接输出端和 FB 引脚时,输出电压通过分压电阻从外部设置,其公式如下:

$$V_{OUT} = V_{FB} \times (1 + \frac{R_1}{R_2})$$

其中:

- Vout = 输出电压
- V_{FB} = FB 引脚的调节电压
- R₁ = 输出端和 FB 引脚之间的电阻
- R₂ = FB 引脚和 GND 之间的电阻
- R₂的推荐值为 1kΩ~10kΩ

11.3.2 升压电感的选择

电感值过小会导致纹波电流过大,电感值过大会导致动态特性差和响应速度慢。应选择适当的电感值,以确保环路稳定性。在 12V 和 5V 的输出应用中,电感值推荐使用 4.7uH,另外电感的饱和电流和温升电流必须大于实际工作状态下的峰值电流和平均电流。

对于 12V、400mA 输出的应用,建议饱和电流大于 3.4A,温升电流大于 3.1A。

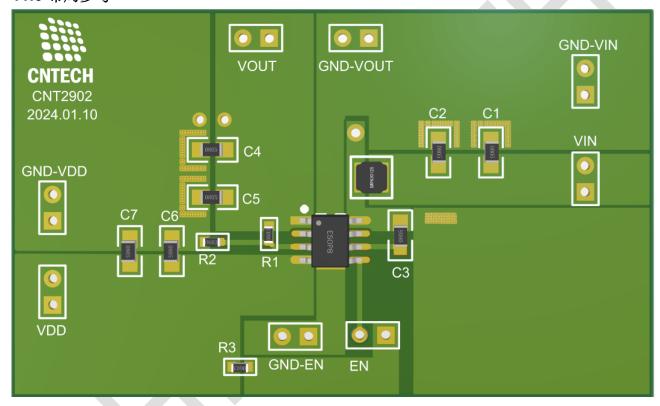
11.3.3 输入电容选择

输入电容可降低升压转换器输入轨上的交流电压纹波。电容的额定电压取决于应用的输入电压。推荐使用 10uF/10V X5R 或 X7R 陶瓷电容。

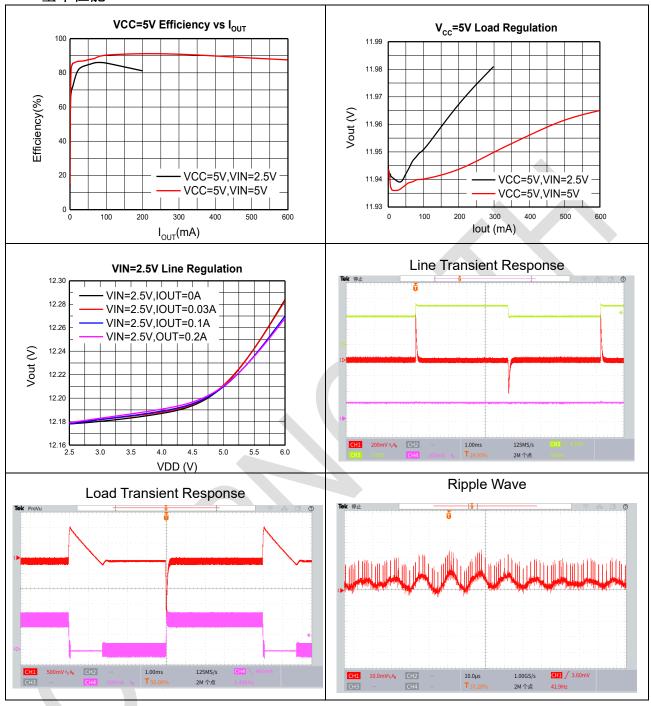
11.3.4 输出电容的选择

选择输出电容主要是为了满足输出纹波和环路稳定性的要求。纹波电压与电容的电容值和等效串联电阻(ESR)有关。电容的额定电压取决于应用的输出电压。推荐使用 22uF/25V X5R 或 X7R 陶瓷电容。

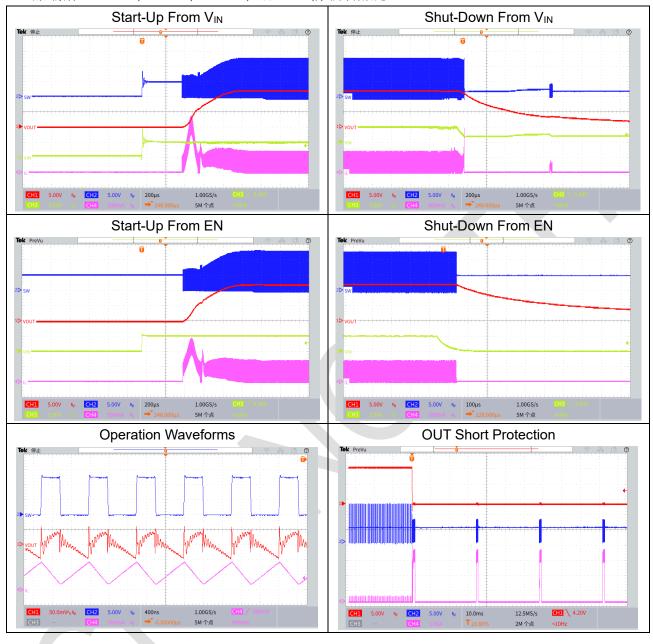
11.4 物料清单


名称	说明	制造商	器件型号	数量
C _{IN1}	陶瓷电容,1uF,10V,X5R,±10%, 0402	TDK	C1005X7S1A105KT000E	1
C _{IN2}	陶瓷电容,10uF,10V,X7R, ±10%,0603	MURATA MANUFACTURING	GRM188Z71A106KA73D	1
Соит	陶瓷电容,22uF,25V,X5R, ±20%,0805	SAMSUNG	CL21A226MAQNNNE	1
C _{BST}	陶瓷电容,100nF,50V,X7R, ±10%,0603	YAGEO	CC0603KRX7R9BB104	1
R ₁	贴片电阻,190k,±1%,0.5W,1210	UNI-ROYAL	1210W2F1903T5E	1
R ₂	贴片电阻,10k,±1%,0.1W,0603	UNI-ROYAL	0603WAF1002T5E	1
L	贴片电感,4.7uH,±20%,额定电流 5A,SMD	Sunlord	ACPR1208S4R7MT	1

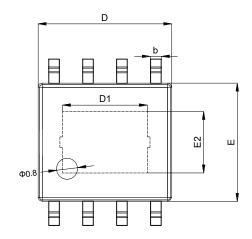
11.5 印刷电路板设计

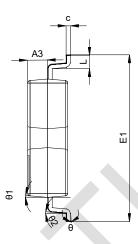

- 优先保证 COUT 的接地端靠近 IC 的 GND,并打过孔到底层地平面,COUT 的正端靠近 VOUT PIN。
- CIN 的电源端靠近 VCC 引脚放置, CIN 的接地端打过孔到底层地平面。
- 电感两端尽量分别靠近 CIN 的电源端和 SW 放置。
- 信号区域要和功率区域分开,避免被功率回路包围而产生电磁耦合干扰。
- 输出反馈线应远离电感和 SW 等干扰源,打过孔从底层走线,并在走线两侧布地线屏蔽滤波。
- 将分压下拉电阻 R2 尽可能靠近 FB 引脚放置,因为 FB 引脚是高阻抗输入引脚,容易受到噪声和高压 尖峰的影响。
- EN 尽量在信号区域走线,避免功率区域的干扰。
- 底层地平面尽量完整,少切割。

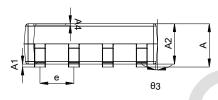
11.6 布局参考


11.7 基本性能

11.8 工作波形


测试条件: Ta=25°C, L=4.7uH, C_{IN}=10uF, C_{OUT}=22uF,除非另有规定。





12 封装信息

ESOP8

尺寸 标注	最小值(mm)	典型值(mm)	最大值(mm)		
A	1.300	1.500	1.700		
A1	0.100	0.150	0.200		
A2	1.350	1.420	1.550		
A3	0.660	0.670	0.680		
A4	0.020		0.050		
С	0.170	0.203	0.250		
E	3.800	3.900	4.000		
E1	5.800	6.000	6.200		
L	0.450	0.600	0.750		
b	0.330	0.400	0.510		
D	4.800	4.900	5.000		
е		1.270BSC			
θ	0°	3°	6°		
θ1		12°REF.			
θ2	θ2 5°REF.				
θ3		12°REF.			